

JCDS Coding as Literacy Framework

In a world where driverless cars are no longer far-fetched science fiction, news feeds are formed by marketing
algorithms, unlimited goods and services are bought and sold online and cyber-warfare is a looming national security
threat, computer science competency is a vital skill for full participation in 21st century civic society. Coding engages
children in problem solving, abstract thinking, collaboration and other key skills. Coding gives students an opportunity
to develop their creativity and express their identity by creating personally meaningful projects. At JCDS, young coders
create programs to develop and express their Jewish identity in a pluralist community. The abilities to effectively use
and create technology as an avenue for personal expression and to solve complex problems are the new and essential
literacy skills of the twenty-first century. The vision of the JCDS Coding as Literacy Framework is to engage students
in computer science skills and concepts through the integration of practices, while making connections to what they
know and the world in which they live.

The purpose of the JCDS Coding as Literacy Framework is to provide a map as we develop and implement this

innovative approach to coding as a language of expression in a Jewish context. These documents reflect an integration
of national and state frameworks, grounded in our unique pluralist Jewish context. They were built using resources
such as the Massachusetts Digital Literacy and Computer Science (DLCS) Curriculum Framework, the K-12 CS Frameworks,
and the research of Prof. Marina Umaschi Bers at the Developmental Technologies Research Group at Tufts
University.

The JCDS Coding as Literacy Framework was created using the following guiding principles:

● The ‘playground approach’ to coding, grounded on the Positive Technological Development (PTD)

framework. PTD looks at the cognitive, personal, social, emotional, and moral dimensions of development
through six positive behaviors facilitated by technologies: collaboration, communication, community building,
creation, creativity and choices of conduct.

● Computer science education should focus on powerful ideas of computational thinking: algorithms,
modularity, control structures, representation, hardware/software, design process, and debugging.

● Coding is the new literacy. Coding is more than a technical skill; it is a way to achieve literacy in the
twenty-first century, like reading and writing. Computer science education should strive to give children the
most powerful impact of computational literacy: expression with their own voices.

● All technology introduced to students must be grounded in Developmentally Appropriate Practice.
● Students learn best when solving authentic problems and engaged in project-based learning

For more information, please contact: Jared Matas, Director of STEM Innovation - jaredm@jcdsboston.org

JCDS, Boston’s Jewish Community Day School
 57 Stanley Ave, Watertown MA, 02472 617-972-1733 www.jcdsboston.org

JCDS Coding as Literacy Frameworks: K - 2

Powerful
Ideas Concept

Skill:
Student is able to ...

A
lg

or
ith

m
s

People follow and create processes as
part of daily life. These processes can be
expressed as algorithms that computers
can follow.

- Program syntactically correct complex
sequences with 6 or more blocks without
assistance.
- Create an algorithm to solve a problem
(e.g., move a character/robot/person
through a maze).

M
od

ul
ar

ity A computer program is a set of
commands created by people to do
something.
Complex tasks can be broken down into
simpler instructions, some of which can
be broken down even further.

- Create a simple computer program.
- Break up programming task into parts
that are inter-dependent or recursive.
- Use clusters of blocks as units in larger
programs.
- Combine pieces of different programs
to achieve a goal.

H
ar

dw
ar

e
/ S

of
tw

ar
e

Smart objects are not magical; objects are
human engineered.
A computing system is composed of
hardware and software. Hardware
consists of physical components, while
software provides instructions for the
system.

- Describe the function of electronics in a
robot.
- Understand that you must program a
robot or computer in order for it to
function.
- Explain that computing devices
function when applications, programs, or
commands are executed.

C
on

tr
ol

 S
tr

uc
tu

re Computers only follow the program’s
instructions.
Computers follow precise sequences of
instructions that automate tasks. Program
execution can also be nonsequential by
repeating patterns of instructions and
using events to initiate instructions.

- Use control structures, including loops,
event handlers, and conditionals to
specify the flow of execution.
- Correctly name and use parameter
cards, loops and conditionals.
- Purposefully use and understand the
effect of a repeat loop.
- Understand how control is passed
through message blocks.

D
eb

ug
gi

ng Things do not just happen to work on the
first try - many itierations are usually
necessary to get it right. - Recognize bugs in program sequences

and is able to fix the problem using trial
and error.

D
es

ig
n

Pr
oc

es
s

The Engineering Design Process is an
iterative process which provides steps for
planning and creating human-made
objects or processes to solve problems.
The engineering design process includes
identifying a problem, looking for ideas,
developing solutions and sharing
solutions with others. - Self-initialize and effectively use the

engineering design process.

R
ep

re
se

nt
at

io
n

Information in the real world can be
represented in computer programs.
Programs store and manipulate data, such
as numbers, words, colors, and images.
The type of data determines the actions
and attributes associated with it.

- Identify all symbolic blocks, sensors,
and parameter cards.
- Explain use of blocks, sensors and
parameter cards in relation to KIBO or
more abstractly in relation to
programming in general.

Powerful
Ideas

A
lg

or
ith

m
s

M
od

ul
ar

ity
H

ar
dw

ar
e

/ S
of

tw
ar

e
C

on
tr

ol
 S

tr
uc

tu
re

D
eb

ug
gi

ng
D

es
ig

n
Pr

oc
es

s
R

ep
re

se
nt

at
io

n

JCDS Coding as Literacy Frameworks: 3 - 5

Concept
Skill:

Student is able to ...

Different algorithms can achieve the
same result. Some algorithms are more
appropriate for a specific context than
others.

- Generate multiple solutions for the
same problem (or sub-problem).
- Use logical reasoning to predict
outcomes of an algorithm.
- Write, debug, and correct programs
using successively sophisticated
techniques.

Programs can be broken down into
smaller parts to facilitate their design,
implementation, and review. Programs
can also be created by incorporating
smaller portions of programs that have
already been created.

- Combine pieces of different programs
to achieve a goal.
- 'Re-mix' code from others or their own
programs in new ways.

Hardware and software work together as
a system to accomplish tasks, such as
sending, receiving, processing, and
storing units of information as bits. Bits
serve as the basic unit of data in
computing systems and can represent a
variety of information.

Describe the differences between
hardware and software.

Control structures, including loops, event
handlers, and conditionals, are used to
specify the flow of execution.
Conditionals selectively execute or skip
instructions under different conditions.

- Use arithmetic operators, conditionals,
and repetition in programs.
- Understand and purposefully use all
trigger and loop blocks.

Debugging involves systematic analysis
and evaluation using skills such as
testing, logical thinking and problem
solving in an intentional, iterative step-
by-step way.

- Detect and correct logical errors in
various algorithms.
- Use interactive debugging to detect and
correct simple program errors.
- Start to be systematic in approach
debugging.

People develop programs using an
iterative process involving design,
implementation, and review. Design
often involves reusing existing code or
remixing other programs within a
community. People continuously review
whether programs work as expected, and
they fix, or debug, parts that do not.
Repeating these steps enables people to
refine and improve programs.

- Design, build, and iterate a project
independently.

Concepts can be represented by symbols,
ie: letters represent sound, numbers
represent quantities, programming
instructions represent behaviors.
Variables store values that represent
data.

- Utilize variables successfully.

Powerful
Ideas

A
lg

or
ith

m
s

M
od

ul
ar

ity
H

ar
dw

ar
e

/ S
of

tw
ar

e
C

on
tr

ol
 S

tr
uc

tu
re

D
eb

ug
gi

ng
D

es
ig

n
Pr

oc
es

s
R

ep
re

se
nt

at
io

n

JCDS Coding as Literacy Frameworks: 6 - 8

Concept
Skill:

Student is able to ...

People design algorithms that are
generalizable to many situations.
Algorithms that are readable are easier to
follow, test, and debug.

- Create a program that implements an
algorithm to achieve a given goal.
- Compare algorithms to solve a problem,
based on a given criteria (e.g., time,
resource, accessibility).

Programs use procedures to organize
code, hide implementation details, and
make code easier to reuse. Procedures
can be repurposed in new programs.
Defining parameters for procedures can
generalize behavior and increase
reusability

- Decompose a problem and create a sub-
solution for each of its parts (e.g., video
game, robot obstacle course, making
dinner).
- Use functions to hide detail in a
program.

Computing devices take many forms (e.
g., car, insulin pump, or robot), not just
personal computers, phones and tablets.
They use many types of input data
(collected via gesture, voice, movement,
location, and other data) and run
instructions in the form of programs to
produce certain outputs (e.g., images,
sounds, and actions). Hardware and
software determine a computing system’s
capability to store and process
information.

Identify and describe the use of sensors,
actuators, and control systems in an
embodied system (e.g., a robot, an e-
textile, installation art, smart room).

Programmers select and combine control
structures, such as loops, event handlers,
and conditionals, to create more complex
program behavior.

- Design and implement problem
solutions using a programming language,
including all of the following: looping
behavior, conditional statements,
expressions, variables, and functions.

When code doesn't work as intended,
trouble-shooting strategies applied in a
systematic fashion can help.

- Trace programs step-by-step in order to
predict their behavior.
- Apply strategies to engage in
systematic problem solving regardless of
the programming platform.
- Identify and fix errors using a
systematic process.

People design meaningful solutions for
others by defining a problem’s criteria
and constraints, carefully considering the
diverse needs and wants of the
community, and testing whether criteria
and constraints were met.

- Use an iterative approach to
development and debugging to fully
understand and address the dimensions of
a problem.

Computational modeling and simulation
help people to represent and understand
complex processes and phenomena.

- Use, modify, and create computational
models and simulations to analyze,
identify patterns, and answer questions of
real phenomena and hypothetical
scenarios.

